首页 | 本学科首页   官方微博 | 高级检索  
     


Chemically Tuned p‐ and n‐Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics
Authors:Hyun Goo Ji,Pablo Solí  s‐Fern  ndez,Daisuke Yoshimura,Mina Maruyama,Takahiko Endo,Yasumitsu Miyata,Susumu Okada,Hiroki Ago
Affiliation:Hyun Goo Ji,Pablo Solís‐Fernández,Daisuke Yoshimura,Mina Maruyama,Takahiko Endo,Yasumitsu Miyata,Susumu Okada,Hiroki Ago
Abstract:Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post‐silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom‐thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p‐ and n‐type semiconductors is essential for various device applications, such as complementary metal‐oxide‐semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4‐nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field‐effect transistors (FETs) to p‐ and n‐type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V?1s?1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X‐ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption ( ≈ 0.17 nW). Furthermore, a p‐n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC‐based advanced electronics.
Keywords:chemical doping  chemical vapor deposition  complementary inverter  p‐n junction  tungsten diselenide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号