Abstract: | Emulating the biological visual perception system typically requires a complex architecture including the integration of an artificial retina and optic nerves with various synaptic behaviors. However, self‐adaptive synaptic behaviors, which are frequently translated into visual nerves to adjust environmental light intensities, have been one of the serious challenges for the artificial visual perception system. Here, an artificial optoelectronic neuromorphic device array to emulate the light‐adaptable synaptic functions (photopic and scotopic adaptation) of the biological visual perception system is presented. By employing an artificial visual perception circuit including a metal chalcogenide photoreceptor transistor and a metal oxide synaptic transistor, the optoelectronic neuromorphic device successfully demonstrates diverse visual synaptic functions such as phototriggered short‐term plasticity, long‐term potentiation, and neural facilitation. More importantly, the environment‐adaptable perception behaviors at various levels of the light illumination are well reproduced by adjusting load transistor in the circuit, exhibiting the acts of variable dynamic ranges of biological system. This development paves a new way to fabricate an environmental‐adaptable artificial visual perception system with profound implications for the field of future neuromorphic electronics. |