首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrathin Cobalt Oxide Layers as Electrocatalysts for High‐Performance Flexible Zn–Air Batteries
Authors:Tianpei Zhou  Wanfei Xu  Nan Zhang  Zhiyi Du  Chengan Zhong  Wensheng Yan  Huanxin Ju  Wangsheng Chu  Hong Jiang  Changzheng Wu  Yi Xie
Abstract:Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal–air batteries. In this study, one‐nanometer‐scale ultrathin cobalt oxide (CoOx) layers are fabricated on a conducting substrate (i.e., a metallic Co/N‐doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn–air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X‐ray absorption spectroscopy reveals that the metallic Co/N‐doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as‐obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half‐wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm?2 for OER. The flexible Zn–air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat ?1, which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high‐performance rechargeable metal–air battery systems.
Keywords:cobalt oxide  enhanced conductivity  flexible Zn–  air battery  high specific power  one‐nanometer scale  ultrathin layer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号