首页 | 本学科首页   官方微博 | 高级检索  
     


A High‐Performance Self‐Regenerating Solar Evaporator for Continuous Water Desalination
Authors:Yudi Kuang  Chaoji Chen  Shuaiming He  Emily M. Hitz  Yilin Wang  Wentao Gan  Ruiyu Mi  Liangbing Hu
Abstract:Emerging solar desalination by interfacial evaporation shows great potential in response to global water scarcity because of its high solar‐to‐vapor efficiency, low environmental impact, and off‐grid capability. However, solute accumulation at the heating interface has severely impacted the performance and long‐term stability of current solar evaporation systems. Here, a self‐regenerating solar evaporator featuring excellent antifouling properties using a rationally designed artificial channel‐array in a natural wood substrate is reported. Upon solar evaporation, salt concentration gradients are formed between the millimeter‐sized drilled channels (with a low salt concentration) and the microsized natural wood channels (with a high salt concentration) due to their different hydraulic conductivities. The concentration gradients allow spontaneous interchannel salt exchange through the 1–2 µm pits, leading to the dilution of salt in the microsized wood channels. The drilled channels with high hydraulic conductivities thus function as salt‐rejection pathways, which can rapidly exchange the salt with the bulk solution, enabling the real‐time self‐regeneration of the evaporator. Compared to other salt‐rejection designs, the solar evaporator exhibits the highest efficiency (≈75%) in a highly concentrated salt solution (20 wt% NaCl) under 1 sun irradiation, as well as long‐term stability (over 100 h of continuous operation).
Keywords:antifouling  channel arrays  long‐term stability  self‐regeneration  solar desalination
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号