首页 | 本学科首页   官方微博 | 高级检索  
     


Compositional Control in 2D Perovskites with Alternating Cations in the Interlayer Space for Photovoltaics with Efficiency over 18%
Authors:Tao Luo  Yalan Zhang  Zhuo Xu  Tianqi Niu  Jialun Wen  Jing Lu  Shengye Jin  Shengzhong Liu  Kui Zhao
Affiliation:Tao Luo,Yalan Zhang,Zhuo Xu,Tianqi Niu,Jialun Wen,Jing Lu,Shengye Jin,Shengzhong (Frank) Liu,Kui Zhao
Abstract:2D perovskites stabilized by alternating cations in the interlayer space (ACI) represent a very new entry as highly efficient semiconductors for solar cells approaching 15% power conversion efficiency (PCE). However, further improvements will require understanding of the nature of the films, e.g., the thickness distribution and charge‐transfer characteristics of ACI quantum wells (QWs), which are currently unknown. Here, efficient control of the film quality of ACI 2D perovskite (GA)(MA)nPbnI3n+1 (〈n〉 = 3) QWs via incorporation of methylammonium chloride as an additive is demonstrated. The morphological and optoelectronic characterizations unambiguously demonstrate that the additive enables a larger grain size, a smoother surface, and a gradient distribution of QW thickness, which lead to enhanced photocurrent transport/extraction through efficient charge transfer between low‐n and high‐n QWs and suppressed nonradiative charge recombination. Therefore, the additive‐treated ACI perovskite film delivers a champion PCE of 18.48%, far higher than the pristine one (15.79%) due to significant improvements in open‐circuit voltage and fill factor. This PCE also stands as the highest value for all reported 2D perovskite solar cells based on the ACI, Ruddlesden–Popper, and Dion–Jacobson families. These findings establish the fundamental guidelines for the compositional control of 2D perovskites for efficient photovoltaics.
Keywords:ACI perovskites  charge transport  quantum wells  solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号