首页 | 本学科首页   官方微博 | 高级检索  
     


A novel modified undersampling (MUS) technique for software defect prediction
Authors:P. Lingden  Abeer Alsadoon  P.W.C. Prasad  Omar Hisham Alsadoon  Rasha S. Ali  Vinh Tran Quoc Nguyen
Abstract:Background and aim: Many sophisticated data mining and machine learning algorithms have been used for software defect prediction (SDP) to enhance the quality of software. However, real‐world SDP data sets suffer from class imbalance, which leads to a biased classifier and reduces the performance of existing classification algorithms resulting in an inaccurate classification and prediction. This work aims to improve the class imbalance nature of data sets to increase the accuracy of defect prediction and decrease the processing time . Methodology: The proposed model focuses on balancing the class of data sets to increase the accuracy of prediction and decrease processing time. It consists of a modified undersampling method and a correlation feature selection (CFS) method. Results: The results from ten open source project data sets showed that the proposed model improves the accuracy in terms of F1‐score to 0.52 ~ 0.96, and hence it is proximity reached best F1‐score value in 0.96 near to 1 then it is given a perfect performance in the prediction process. Conclusion: The proposed model focuses on balancing the class of data sets to increase the accuracy of prediction and decrease processing time using the proposed model.
Keywords:correlation feature selection  machine learning  modified undersampling  software defect prediction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号