首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and Electric Control of Photonic Modes in Random Dielectrics
Authors:Dario Balestri  Maurangelo Petruzzella  Simona Checcucci  Francesca Intonti  Niccol Caselli  Fabrizio Sgrignuoli  Frank W M van Otten  Andrea Fiore  Massimo Gurioli
Affiliation:Dario Balestri,Maurangelo Petruzzella,Simona Checcucci,Francesca Intonti,Niccolò Caselli,Fabrizio Sgrignuoli,Frank W. M. van Otten,Andrea Fiore,Massimo Gurioli
Abstract:Random dielectrics defines a class of non‐absorbing materials where the index of refraction is randomly arranged in space. Whenever the transport mean free path is sufficiently small, light can be confined in modes with very small volume. Random photonic modes have been investigated for their basic physical insights, such as Anderson localization, and recently several applications have been envisioned in the field of renewable energies, telecommunications, and quantum electrodynamics. An advantage for optoelectronics and quantum source integration offered by random systems is their high density of photonic modes, which span a large range of spectral resonances and spatial distributions, thus increasing the probability to match randomly distributed emitters. Conversely, the main disadvantage is the lack of deterministic engineering of one or more of the many random photonic modes achieved. This issue is solved by demonstrating the capability to electrically and mechanically control the random modes at telecom wavelengths in a 2D double membrane system. Very large and reversible mode tuning (up to 50 nm), both toward shorter or longer wavelength, is obtained for random modes with modal volumes of the order of few tens of (λ/n)3.
Keywords:FDTD simulations  near‐field spectroscopy  optomechanical devices  photonic tuning  random dielectrics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号