首页 | 本学科首页   官方微博 | 高级检索  
     


Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction
Authors:Hao‐Lin Wu  Xu‐Bing Li  Chen‐Ho Tung  Li‐Zhu Wu
Abstract:As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.
Keywords:CO2 photoreduction  photocatalysis  semiconductor QDs  solar‐to‐fuel conversion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号