首页 | 本学科首页   官方微博 | 高级检索  
     


2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion
Authors:Xiaoyue Ni  Xiaogang Guo  Jiahong Li  Yonggang Huang  Yihui Zhang  John A Rogers
Abstract:Most natural materials expand uniformly in all directions upon heating. Artificial, engineered systems offer opportunities to tune thermal expansion properties in interesting ways. Previous reports exploit diverse design principles and fabrication techniques to achieve a negative or ultralow coefficient of thermal expansion, but very few demonstrate tunability over different behaviors. This work presents a collection of 2D material structures that exploit bimaterial serpentine lattices with micrometer feature sizes as the basis of a mechanical metamaterials system capable of supporting positive/negative, isotropic/anisotropic, and homogeneous/heterogeneous thermal expansion properties, with additional features in unusual shearing, bending, and gradient modes of thermal expansion. Control over the thermal expansion tensor achieved in this way provides a continuum‐mechanics platform for advanced strain‐field engineering, including examples of 2D metamaterials that transform into 3D surfaces upon heating. Integrated electrical and optical sources of thermal actuation provide capabilities for reversible shape reconfiguration with response times of less than 1 s, as the basis of dynamically responsive metamaterials.
Keywords:bimaterial lattices  programmable metamaterials  strain‐field engineering  tunable thermal properties  unusual thermal expansion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号