首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的固相质量流量检测
引用本文:赵延军 程守光 高承彬等. 基于RBF网络的固相质量流量检测[J]. 传感器与微系统, 2014, 0(5): 151-153
作者姓名:赵延军 程守光 高承彬等
作者单位:河北联合大学电气工程学院,河北唐山063009
基金项目:国家自然科学基金资助项目(61271402);河北省自然科学基金资助项目(F2010001970)
摘    要:气固两相流流动的复杂性和多样性直接影响了固相质量流量的测量精度,严重限制了其在工业生产中的应用。在双弯管法检测固相质量流量原理的基础上,利用人工神经网络优良的非线性映射能力,以两弯管处的压力差为输入,建立了一种基于径向基(RBF)网络的软测量模型,实现了对固相质量流量的在线测量。实验结果表明:该模型测量误差在3%以内,能够有效解决固相质量流量在线检测的问题,并且具有测量快速、精度高的优点。

关 键 词:煤粉  质量流量  双弯管法  径向基网络

Solid phase mass flow detection based on RBF network
ZHAO Yan-jun,CHENG Shou-guang,GAO Cheng-bin,MA Cui-hong. Solid phase mass flow detection based on RBF network[J]. Transducer and Microsystem Technology, 2014, 0(5): 151-153
Authors:ZHAO Yan-jun  CHENG Shou-guang  GAO Cheng-bin  MA Cui-hong
Affiliation:( College of Electrical Engineering, Hebei United University, Tangshan 063009, China)
Abstract:Complexity and diversity of flow of gas-solid two-phase flow affect measurement precision of solid phase mass flow directly, limit its application in industrial production seriously. Based on principle of double-elbow method of solid phase mass flow detection, using powerful nonlinear mapping ability of artificial neural network, take pressure difference between the two elbows as input, a RBF-based network soft measurement model is established, realize online measurement of solid phase mass flow. Experimental results show that the model measurement error is within 3 %, can solve the problem of solid phase mass flow on-line detection effectively, and has advantages of fast, high precision.
Keywords:pulverized coal  mass flow  double-elbow method  RBF network
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号