首页 | 本学科首页   官方微博 | 高级检索  
     

Ternary MOF‑Based Redox Active Sites Enabled 3D‑on‑2D Nanoarchitectured Battery‑Type Electrodes for High‑Energy‑Density Supercapatteries
作者姓名:Goli Nagaraju  SChandra Sekhar  Bhimanaboina Ramulu  SkKhaja Hussain  DNarsimulu  Jae Su Yu
作者单位:Institute for Wearable Convergence Electronics;Department of Chemical Engineering
基金项目:the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2017R1A2B4011998 and No.2018R1A6A1A03025708).
摘    要:Designing rationally combined metal-organic frameworks(MOFs)with multifunctional nanogeometries is of significant research interest to enable the electrochemical properties in advanced energy storage devices.Herein,we explored a new class of binderfree dual-layered Ni-Co-Mn-based MOFs(NCM-based MOFs)with three-dimensional(3D)-on-2D nanoarchitectures through a polarityinduced solution-phase method for high-performance supercapatteries.The hierarchical NCM-based MOFs having grown on nickel foam exhibit a battery-type charge storage mechanism with superior areal capacity(1311.4μAh cm^−2 at 5 mA cm^−2),good rate capability(61.8%;811.67μAh cm^−2 at 50 mA cm^−2),and an excellent cycling durability.The superior charge storage properties are ascribed to the synergistic features,higher accessible active sites of dual-layered nanogeometries,and exalted redox chemistry of multi metallic guest species,respectively.The bilayered NCM-based MOFs are further employed as a battery-type electrode for the fabrication of supercapattery paradigm with biomass-derived nitrogen/oxygen doped porous carbon as a negative electrode,which demonstrates excellent capacity of 1.6 mAh cm^−2 along with high energy and power densities of 1.21 mWh cm^−2 and 32.49 mW cm^−2,respectively.Following,the MOF-based supercapattery was further assembled with a renewable solar power harvester to use as a self-charging station for various portable electronic applications.

关 键 词:Metal-organic  frameworks  Dual  layers  Redox  chemistry  Supercapattery  Renewable  energy
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号