首页 | 本学科首页   官方微博 | 高级检索  
     


Confidence modeling for handwriting recognition: algorithms and applications
Authors:John F. Pitrelli  Jayashree Subrahmonia  Michael P. Perrone
Affiliation:(1) IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA;(2) Present address: IBM Silicon Valley Laboratory, 555 Bailey Avenue, San Jose, CA 95141, USA
Abstract:Confidence scoring can assist in determining how to use imperfect handwriting-recognition output. We explore a confidence-scoring framework for post-processing recognition for two purposes: deciding when to reject the recognizer's output, and detecting when to change recognition parameters e.g., to relax a word-set constraint. Varied confidence scores, including likelihood ratios and posterior probabilities, are applied to an Hidden-Markov-Model (HMM) based on-line recognizer. Receiver-operating characteristic curves reveal that we successfully reject 90% of word recognition errors while rejecting only 33% of correctly-recognized words. For isolated digit recognition, we achieve 90% correct rejection while limiting false rejection to 13%.
Keywords:Confidence scoring  Handwriting recognition  Rejection  Recognition verification  Multi-pass recognition  Online recognition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号