首页 | 本学科首页   官方微博 | 高级检索  
     


Longitudinal leaky SAW resonators and filters on YZ-LiNbO3.
Authors:Tapani Makkonen  Victor P Plessky  William Steichen  Valeri I Grigorievski  Marc Solal  Martti M Salomaa
Affiliation:Materials Physics Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland. tapani.makkonen@iki.fi
Abstract:The high-phase velocity (above 6100 m/s in an aluminum (Al) grating on lithium niobate (LiNbOs)) of the longitudinal leaky surface acoustic wave (SAW) (LLSAW) mode makes it attractive for application in high-frequency SAW ladder filters in the 2-5 GHz range. We investigate the dependence of one-port synchronous LLSAW resonator performance on YZ-LiNbO3 on the metallization thickness and metallization ratio, both experimentally and theoretically. Our results indicate a strong dependence of the Q factor and resonance frequency on the aluminum thickness, with the optimal thickness that produces the highest Q values being about 8%. The optimal thickness increases with the metallization ratio. The observed behavior is interpreted with the help of simulations using a combined finite element method (FEM)/boundary element method (BEM) technique. As an application, bandpass filters have been fabricated in the 2.8 GHz frequency regime, based on LLSAWs. The synchronous resonators constituting the ladder filters operate in the fundamental mode. The filters feature low insertion losses below 3 dB and wide relative passbands of 4.5-5%.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号