首页 | 本学科首页   官方微博 | 高级检索  
     


Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode
Authors:Le Li  Kai Wang  Zhaoqi Huang  Chao Zhang  Tianxi Liu
Affiliation:State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering,Donghua University, Shanghai 201620, China
Abstract:In this study, macroscopic graphene-wrapped melamine foams (MF-G) were fabricated by an MF-templated layer-by-layer (LBL) assembly using graphene oxide as building blocks, followed by solution-processed reduction. By concisely duplicating sponge-like, highly ordered three-dimensional architectures from MF, the resulting MF-G with an interconnected graphene-based scaffold and tunable nanostructure was explored as compressible, robust electrodes for efficient energy storage. A thin layer of pseudocapacitive polypyrrole (PPy) was then attached and uniformly coated on MF-G, resulting in a well-defined core–double-shell configuration of the MF-G-PPy ternary composite sponges. The as-assembled devices exhibited enhancement of supercapacitor performance, with a high specific capacitance of 427 F·g?1 under a compressive strain of 75% and an excellent cycling stability with only 18% degradation after 5,000 charge–discharge cycles. Besides, the MF-G-PPy electrode maintained stable capacitance up to 100 compression–release cycles, with a compressive strain of 75%. These encouraging results thus provide a new route towards the low-cost, easily scalable fabrication of lightweight and deformation-tolerant electrodes.
Keywords:graphene  layer-by-layer self-assembly  highly ordered architecture  conducting polymer  deformation-tolerant electrode
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号