首页 | 本学科首页   官方微博 | 高级检索  
     


heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo
Authors:S Gisselbrecht  JB Skeath  CQ Doe  AM Michelson
Affiliation:Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract:After invagination of the mesodermal primordium in the gastrulating Drosophila embryo, the internalized cells migrate in a dorsolateral direction along the overlying ectoderm. This movement generates a stereotyped arrangement of mesodermal cells that is essential for their correct patterning by later position-specific inductive signals. We now report that proper mesodermal cell migration is dependent on the function of a fibroblast growth factor (FGF) receptor encoded by heartless (htl). In htl mutant embryos, the mesoderm forms normally but fails to undergo its usual dorsolateral migration. As a result, cardiac, visceral, and dorsal somatic muscle fates are not induced by Decapentaplegic (Dpp), a transforming growth factor beta family member that is derived from the dorsal ectoderm. Visceral mesoderm can nevertheless be induced by Dpp in the absence of htl function. Ras1 is an important downstream effector of Htl signaling because an activated form of Ras1 partially rescues the htl mutant phenotype. The evolutionary conservation of htl function is suggested by the strikingly similar mesodermal migration and patterning phenotypes associated with FGF receptor mutations in species as diverse as nematode and mouse. These studies establish that Htl signaling provides a vital connection between initial formation of the embryonic mesoderm in Drosophila and subsequent cell-fate specification within this germ layer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号