首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency-selective MEMS for miniaturized low-power communicationdevices
Authors:Nguyen  CT-C
Affiliation:Dept. of Electr. Eng. & Comput. Eng., Michigan Univ., Ann Arbor, MI;
Abstract:With Q's in the tens to hundreds of thousands, micromachined vibrating resonators are proposed as integrated circuit-compatible tanks for use in the low phase-noise oscillators and highly selective filters of communications subsystems. To date, LF oscillators have been fully integrated using merged CMOS/microstructure technologies, and bandpass filters consisting of spring-coupled micromechanical resonators have been demonstrated in a frequency range from HF to VHF. In particular, two-resonator micromechanical bandpass filters have been demonstrated with frequencies up to 35 MHz, percent bandwidths on the order of 0.2%, and insertion losses less than 2 dB. Higher order three-resonator filters with frequencies near 455 kHz have also been achieved, with equally impressive insertion losses for 0.09% bandwidths, and with more than 64 dB of passband rejection. Additionally, free-beam single-pole resonators have recently been realized with frequencies up to 92 MHz and Q's around 8000. Evidence suggests that the ultimate frequency range of this high-Q tank technology depends upon material limitations, as well as design constraints, in particular, to the degree of electromechanical coupling achievable in microscale resonators
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号