An analysis of ball-and-race milling part II. The babcock E 1.7 mill |
| |
Authors: | L.G. Austin P.T. Luckie K. Shoji |
| |
Affiliation: | The Pennsylvania State University, Mineral Processing Section, University Park, PA 16802 U.S.A.;The Kennedy Van Saun Corporation, Danville, PA 17821 U.S.A. |
| |
Abstract: | A mathematical model was developed for a ball-and-race mill based on specific rates of breakage and primary fragment distributions. The model includes internal classification of particles falling back into the race and external classification due to the built-on classifier. It was demonstrated that the normalized primary fragment distribution produced in a pilot-scale Babcock E-type mill of 17 in. race diameter was the same as in the Hardgrove laboratory test mill and that the specific rates of breakage varied with particle size in the same manner. Steady-state continuous tests on the pilot-scale mill showed that breakage rates depended on the rate of feed, since the mill pulled less power at low feed rates. This effect plus the residence time effect gave coarser product size distributions at low and high feed rates than at a medium feed rate. Model simulations based on parameters measured in the Hardgrove mill correctly predicted the product size distribution from the E-type mill. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|