首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical structure and mechanical properties of soda lime silica glass surfaces treated by thermal poling in inert and reactive ambient gases
Authors:Jiawei Luo  Stephen Bae  Mengxue Yuan  Erik Schneider  Michael T. Lanagan  Carlo G. Pantano  Seong H. Kim
Affiliation:1. Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania;2. Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania;3. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania;4. Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
Abstract:This study employed thermal poling at 200°C as a means to modify the surface mechanical properties of soda lime silica (SLS) glass. SLS float glass panels were allowed to react with molecules constituting ambient air (H2O, O2, N2) while sodium ions were depleted from the surface region through diffusion into the bulk under an anodic potential. A sample poled in inert gas (Ar) was used for comparison. Systematic analyses of the chemical composition, thickness, silicate network, trapped molecular species, and hydrous species in the sodium‐depleted layers revealed correlations between subsurface structural changes and mechanical properties such as hardness, elastic modulus, and fracture toughness. A silica‐like structure was created in the inert gas environment through restructuring of Si–O–Si bonds at 200°C in the Na‐depleted zone; this occurred far below Tg. This silica‐like surface also showed enhancement of hardness comparable to that of pure silica glass. The anodic thermal poling condition was found so reactive that O2 and N2 species can be incorporated into the glass, which also alters the glass structure and mechanical properties. In the case of the anodic surfaces prepared in a humid environment, the glass showed an improved resistance against crack formation, which implies that abundant hydrous species incorporated during thermal poling could be beneficial to improve the toughness.
Keywords:hardness  mechanical properties  soda‐lime‐silica  structure  surface  thermal poling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号