首页 | 本学科首页   官方微博 | 高级检索  
     


Tunable luminescence from bismuth‐doped phosphate laser glass by engineering photonic glass structure
Authors:Ziyang Zhang  Jiangkun Cao  Yafei Xue  Linling Tan  Shanhui Xu  Zhongmin Yang  Mingying Peng
Affiliation:The China‐Germany Research Center for Photonic Materials and Device, the State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, the School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
Abstract:Because of ultra‐broadband near‐infrared (NIR) emission bismuth‐activated glasses and fibers offer a new promising platform for novel photonic devices such as new type of optical amplifiers and broadly tunable fiber lasers. Yet, challenge remains to manipulate the NIR emission behavior of bismuth (Bi) in photonic glasses for efficient Bismuth‐doped fiber and fiber lasers. Here, by engineering phosphorus and aluminum's topology, broadly tunable NIR emission has been realized in Bismuth‐doped phosphate laser glass. Structural and optical analyses on 27Al magic‐angle spinning nuclear magnetic resonance (MAS NMR), 31P MAS NMR, fourier transform infrared (FTIR) and static emission spectra suggest that polymerization of glass network can be improved by proper addition of aluminum into the system, which can be evidenced by partial conversion of Q2 to Q3 species of phosphorus and the shift of P–O–P asymmetric stretching vibration toward lower frequency, and this turns out beneficial to Bi NIR emission. Embedding aluminum tetrahedra into phosphorus glass network can reduce the local crystal field around bismuth and therefore lead to the blueshift of Bi emission. This work presents new insights into the luminescent behavior of Bi ions in phosphate glass and it helps the design and fabrication of Bismuth‐doped glasses and fibers in future.
Keywords:bismuth  NIR emission  phosphate laser glass
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号