首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
Authors:K Nithyanandam  R Pitchumani
Affiliation:1. ENEDI Research Group, Dpto. de Máquinas y Motores Térmicos, Escuela Universitaria de Eibar, University of the Basque Country UPV/EHU, Avda. Otaola 29, Eibar 20600, Spain;2. ENEDI Research Group, Dpto. de Ingeniería Minera, Metalúrgica y Ciencia de los Materiales, Escuela Universitaria de Ingeniería Técnica de Minas y Obras Públicas, University of the Basque Country UPV/EHU, Rafael Moreno Pitxitxi 2, Bilbao 48013, Spain;3. ENEDI Research Group, Dpto. de Máquinas y Motores Térmicos, Escuela Técnica Superior de Ingeniería de Bilbao, University of the Basque Country UPV/EHU, Alameda Urquijo s/n, Bilbao 48013, Spain;1. Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia;2. Department of Mechanical and Industrial Engineering, Zawia University, Libya
Abstract:Latent thermal energy storage system (LTES) is an integral part of concentrating solar power (CSP) plants for storing sun’s energy during its intermittent diurnal availability in the form of latent heat of a phase change material (PCM). The advantages of an LTES include its isothermal operation and high energy storage density, while the low thermal conductivity of the PCM used in LTES poses a significant disadvantage due to the reduction in the rate at which the PCM can be melted (charging) or solidified (discharging). The present study considers an approach to reducing the thermal resistance of LTES through embedding heat pipes to augment the energy transfer from the heat transfer fluid (HTF) to the PCM. Using a thermal resistance network model of a shell and tube LTES with embedded heat pipes, detailed parametric studies are carried out to assess the influence of the heat pipe and the LTES geometric and operational parameters on the performance of the system during charging and discharging. The physical model is coupled with a numerical optimization method to identify the design and operating parameters of the heat pipe embedded LTES system that maximizes energy transferred, energy transfer rate and effectiveness.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号