首页 | 本学科首页   官方微博 | 高级检索  
     


Oxide thickness-dependent transient cladding hoop stress
Authors:Kyu-Tae Kim  Dong Wook Jerng
Affiliation:1. Dongguk University, College of Energy & Environment, 707 Seokjang-Dong, Gyeongju, Gyeongbuk 780-714, Republic of Korea;2. Nuclear Eng. & Tech. Insititute, Korea Hydro & Nuclear Power Co., 508 Geumbyoung-Ro, Daejeon 305-343, Republic of Korea
Abstract:A few thrice-burned Zry-4 fuel assemblies which were loaded in one of the PWRs operating in Korea were found to be failed due to PCI during a power ramp following a rector trip, while thrice-burned Zr–Nb fuel assemblies and twice-burned Zry-4 ones were intact. To investigate the effect of fuel rod oxide thickness on power ramp-induced cladding hoop stress, three intact fuel rods were selected, which include an intact twice-burned Zry-4 fuel rod, an intact thrice-burned Zr-4 fuel rod and an intact thrice-burned Zr–Nb fuel rod. With the use of a fuel performance analysis code, burnup-dependent steady-state cladding stress and ramp power-dependent cladding stresses at the power-ramped burnup were predicted for the three intact fuel rods. It was found that the cladding oxide thickness has a considerable effect on the ramp power-dependent cladding hoop stresses. In addition, the cladding maximum stress of the thrice-burned Zry-4 fuel rod with 125 μm oxide thickness exceeded an ultimate cladding tensile strength of the Zry-4 cladding when the pellet–clad friction coefficient-dependent cladding stress concentration ratio was considered. However, the thrice-burned Zr–Nb fuel rod with 50 μm oxide thickness was evaluated to have a considerable margin against the power ramp-induced PCI failure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号