首页 | 本学科首页   官方微博 | 高级检索  
     


Electrospray cooling for microelectronics
Authors:Weiwei Deng  Alessandro Gomez
Affiliation:1. Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC, USA;2. College of Optics and Photonics, CREOL, University of Central FL, USA;3. Department of Mechanical and Aerospace Engineering, University of Central FL, USA
Abstract:The challenge of effectively removing high heat flux from microelectronic chips may hinder future advancements in the semiconductor industry. Spray cooling is a promising solution to dissipate high heat flux, but traditional sprays suffer from low cooling efficiency partly because of droplet rebound. Here we show that electrosprays provide highly efficient cooling by completely avoiding the droplet rebound, when the electrically charged droplets are pinned on the heated conducting surface by the electric image force. We demonstrate a cooling system consisting of microfabricated multiplexed electrosprays in the cone-jet mode generating electrically charged microdroplets that remove a heat flux of 96 W/cm2 with a cooling efficiency reaching 97%. Scale-up considerations suggest that the electrospray approach is well suited for practical applications by increasing the level of multiplexing and by preserving the system compactness using microfabrication.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号