摘 要: | 针对小波变换容易造成细节信息丢失、非下采样轮廓波变换(NSCT)分解的低频子带系数不稀疏以及红外与可见光图像融合结果综合性能不佳的问题,提出了一种基于稀疏表示和NSCT-PCNN的红外与可见光图像融合算法。首先将源图像进行NSCT分解,获得低、高频子带;其次,利用K奇异值分解(K-SVD)算法对低频子带进行字典训练,实现低频子带的稀疏表示和低频稀疏系数的融合;然后,利用高频子带的空间频率激励脉冲耦合神经网络(PCNN),选择较大点火次数的系数作为高频子带的融合系数;最后对低、高频子带融合系数进行NSCT逆变换,得到融合的图像。实验结果表明,该算法在视觉效果和客观指标方面均具有较大优势,且融合结果综合性能优于现有算法。
|