摘 要: | 传统局域均值分解(LMD)对极值点采用了滑动平均值处理得到局域均值函数和局域包络函数,易造成分解的分量过平滑而影响精度。为了减小过平滑影响,采用Akima插值法代替滑动平均值法处理局域函数来改进LMD算法,针对电力系统负荷序列的非平稳性和非线性,利用改进LMD算法进行序列分解得到若干分量,再利用广义回归神经网络(GRNN)预测各个分量的趋势,叠加各分量趋势得到负荷序列总趋势。GRNN神经网络较传统神经网络训练速度快、精度高,能很好地预测非线性序列。算例分析表明,改进LMD结合GRNN的方法较经验模态分解(EMD)结合GRNN的方法在短期电力负荷预测中有更高的预测精度。
|