首页 | 本学科首页   官方微博 | 高级检索  
     

铁强化电解锰阳极液体系中氧化锰矿烟气脱硫和锰浸出工艺
引用本文:姚露,辛广智,杨林,蒲鹏燕,江霞,蒋文举.铁强化电解锰阳极液体系中氧化锰矿烟气脱硫和锰浸出工艺[J].化工进展,2021,40(5):2859-2866.
作者姓名:姚露  辛广智  杨林  蒲鹏燕  江霞  蒋文举
作者单位:四川大学建筑与环境学院,四川成都610065;国家烟气脱硫工程技术研究中心,四川成都610065;四川大学建筑与环境学院,四川成都610065
基金项目:国家重点研发计划(2018YFC0213405)
摘    要:结合电解锰生产工艺,以氧化锰矿为原料,以电解锰生产过程产生的电解阳极液废水配置烟气脱硫浆液,在其中添加FeSO4强化电解锰阳极液体系下氧化锰矿烟气脱硫及浸锰能力,探讨铁强化氧化锰矿烟气脱硫和浸锰的工艺条件对烟气SO2脱除和锰浸出的影响机制。研究发现FeSO4的加入,通过FeSO4与MnO2之间的氧化还原反应以及产物三价铁离子和二价锰离子的协同催化作用,可同时提高锰矿烟气脱硫效率和锰的浸出率。锰矿粒径越小,脱硫及浸锰效率越高。温度升高,氧化锰矿浆液烟气脱硫率逐渐下降,浸锰率则先升高后下降,并在60℃时达到最大。浆液液固比和烟气流量的增大均会导致烟气脱硫率的下降,但会提高氧化锰矿浸锰率。进口SO2浓度过高会导致脱硫率下降,但更有利于浸锰。采用5级逆流吸收对7%的烟气进行铁离子强化氧化锰浆脱硫,得到最终SO2出口浓度293μL/L,溶液Mn2+浓度为44.72g/L,满足电解要求。铁强化电解锰阳极液体系有效回收利用了电解锰生产废水,不仅集脱硫浸锰工艺为一体,且可实现脱硫和浸锰效率的同时提升,为电解锰行业的清洁生产和资源综合利用提供理论依据和技术参考。

关 键 词:烟道气  浸取  环境  脱硫  氧化锰矿  
收稿时间:2020-06-12

Using iron promoted manganese oxide ore for simultaneous flue gas desulfurization and Mn leaching: a process study
YAO Lu,XIN Guangzhi,YANG Lin,PU Pengyan,JIANG Xia,JIANG Wenju.Using iron promoted manganese oxide ore for simultaneous flue gas desulfurization and Mn leaching: a process study[J].Chemical Industry and Engineering Progress,2021,40(5):2859-2866.
Authors:YAO Lu  XIN Guangzhi  YANG Lin  PU Pengyan  JIANG Xia  JIANG Wenju
Affiliation:1.College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
2.National Engineering Research Center for Flus Gas Desulfurization, Chengdu 610065, Sichuan, China
Abstract:In order to remove SO2 from manganese slag calcination process, and combine with the production features of electrolytic manganese production enterprises, the manganese oxide ore was used as the raw material, and the wastewater anode solution of electrolytic manganese was used to prepare the ore pulp (desulfurizer). The influences of processing parameters and FeSO4 added on desulfurization and manganese leaching were studied. The results indicated that the introduction of FeSO4 promoted the Mn leaching via the redox reaction between MnO2 and FeSO4, and then, the product (Fe3+) and the Mn2+ in solution could act as the catalyst to catalyze the desulfurization reaction. The desulfurization activity and the Mn leaching rate increased with the decrease of the ore particle size. With the increase of reaction temperature, the desulfurization activity decreased, and the Mn leaching rate increased at first and then decreased which reached the maximum value at 60℃. When the liquid-solid ratio and the inlet flow rate increases, the desulfurization efficiency decreased, but the Mn leaching rate was enhanced. The 5-stage manganese oxide slurry desulfurization of the 7% flue gas with FeSO4 added showed that the outlet SO2 was 293μL/L, and the Mn2+ concentration of lixivium was 44.72g/L, which met the requirements of electrolytic manganese. The present flue gas desulfurization system could recycle the wastewater anode solution of electrolytic manganese, and provide a new technology for sulfur dioxide removal from flue gas and Mn extraction form manganese oxide ore simultaneously. The present study provides theoretical basis and technical reference for clean production and comprehensive utilization of resources in electrolytic manganese industry.
Keywords:flue gas  leaching  environment  desulfurization  manganese oxide ore  iron  
本文献已被 万方数据 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号