首页 | 本学科首页   官方微博 | 高级检索  
     


The size effect and high activity of nanosized platinum supported catalysts for low temperature oxidation of volatile organic compounds
Authors:Ziqing Yuan  Ziyu Chen  Jianxin Mao  Renxian Zhou
Affiliation:Institute of Catalysis,Zhejiang University,Hangzhou 310028,China
Abstract:Pt/Al2O3 catalysts with smaller size of Pt nanoparticles were prepared by ethylene glycol reduction method in two different way and their oxidation activities for three typical VOCs (volatile organic compounds) were evaluated. The catalyst prepared by first adsorption and then reduction procedure is denoted as L-Pt/Al2O3 while the catalyst prepared by first reduction and then loading procedure is defined as R-Pt/Al2O3. The results show that L-Pt/Al2O3 with the stronger interaction between Pt species and Al2O3 exhibit smaller size of Pt nanoparticles and favorable thermal stability compared with R-Pt/Al2O3. L-Pt/Al2O3 is favor of the formation of more adsorbed oxygen species and more Pt2+ species, resulting in high catalytic activity for benzene and ethyl acetate oxidation. However, R-Pt/Al2O3 catalysts with higher proportion of Pt0/Pt2+ and bigger size of Pt particles exhibits higher catalytic activity for n-hexane oxidation. Pt particles in R-Pt/Al2O3 were aggregated much more serious than that in L-Pt/Al2O3 at the same calcination temperature. The Pt particles supported on Al2O3 with~10 nm show the best catalytic activity for n-hexane oxidation.
Keywords:Environment  Particle size distribution  Catalysis  Thermal stability  Size effect of Pt  
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号