首页 | 本学科首页   官方微博 | 高级检索  
     


Traffic Engineering in Dynamic Hybrid Segment Routing Networks
Authors:Yingya Guo  Kai Huang  Cheng Hu  Jiangyuan Yao  Siyu Zhou
Abstract:The emergence of Segment Routing (SR) provides a novel routing paradigm that uses a routing technique called source packet routing. In SR architecture, the paths that the packets choose to route on are indicated at the ingress router. Compared with shortest-path-based routing in traditional distributed routing protocols, SR can realize a flexible routing by implementing an arbitrary flow splitting at the ingress router. Despite the advantages of SR, it may be difficult to update the existing IP network to a full SR deployed network, for economical and technical reasons. Updating partial of the traditional IP network to the SR network, thus forming a hybrid SR network, is a preferable choice. For the traffic is dynamically changing in a daily time, in this paper, we propose a Weight Adjustment algorithm WASAR to optimize routing in a dynamic hybrid SR network. WASAR algorithm can be divided into three steps: firstly, representative Traffic Matrices (TMs) and the expected TM are obtained from the historical TMs through ultra-scalable spectral clustering algorithm. Secondly, given the network topology, the initial network weight setting and the expected TM, we can realize the link weight optimization and SR node deployment optimization through a Deep Reinforcement Learning (DRL) algorithm. Thirdly, we optimize the flow splitting ratios of SR nodes in a centralized online manner under dynamic traffic demands, in order to improve the network performance. In the evaluation, we exploit historical TMs to test the performance of the obtained routing configuration in WASAR. The extensive experimental results validate that our proposed WASAR algorithm has superior performance in reducing Maximum Link Utilization (MLU) under the dynamic traffic.
Keywords:Traffic engineering  routing optimization  segment routing  deep reinforcement learning  ultra-scalable spectral clustering
点击此处可从《计算机、材料和连续体(英文)》浏览原始摘要信息
点击此处可从《计算机、材料和连续体(英文)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号