首页 | 本学科首页   官方微博 | 高级检索  
     

多策略MRFO算法的卷积神经网络超参数优化
引用本文:刘永利,朱亚孟,晁浩. 多策略MRFO算法的卷积神经网络超参数优化[J]. 北京邮电大学学报, 2021, 44(6): 83. DOI: 10.13190/j.jbupt.2021-068
作者姓名:刘永利  朱亚孟  晁浩
作者单位:河南理工大学 计算机科学与技术学院, 焦作 454000
基金项目:国家自然科学基金项目(61872126);河南省高等学校重点科研项目(19A520004)
摘    要:卷积神经网络的性能与超参数配置密切相关,然而最优超参数的选择耗时耗力. 为了提高超参数选择的效率,提出了一种基于多策略的蝠鲼觅食优化算法,一方面采用半数均匀初始化策略提升种群的多样性;另一方面,融合新权重因子更新策略和分裂策略,提升收敛速度和拟合精度. 根据实数编码策略将所提算法用于卷积神经网络的超参数优化研究中,用3种觅食方式进行迭代,以得到最优的超参数配置. 为了评估超参数优化的有效性,与卷积神经网络超参数优化算法在手写数字和CIFAR-10数据集上进行了对比实验,实验结果表明,所提算法可消耗较少的资源,并获得更高的准确率.

关 键 词:卷积神经网络  蝠鲼觅食优化算法  超参数优化  
收稿时间:2021-04-20

Hyperparameter Optimization of Convolutional Neural Network Based on Multi-Strategy MRFO Algorithm
LIU Yong-li,ZHU Ya-meng,CHAO Hao. Hyperparameter Optimization of Convolutional Neural Network Based on Multi-Strategy MRFO Algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(6): 83. DOI: 10.13190/j.jbupt.2021-068
Authors:LIU Yong-li  ZHU Ya-meng  CHAO Hao
Affiliation:College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
Abstract:The performance of convolutional neural network is closely related to the configuration of hyperparameters. However, the selection of optimal hyperparameters is time-consuming and labor-consuming. In order to improve the efficiency of hyperparameter selection, a multi-strategy manta ray foraging optimization algorithm is proposed. On the one hand, half uniform initialization strategy is adopted to improve population diversity. On the other hand, it combines new weight factor update strategy and splitting strategy to improve the convergence speed and fitting accuracy respectively. According to the real coding strategy, this algorithm is applied to the research of convolutional neural network hyperparameter optimization, which can be iterated according to three foraging methods to obtain the optimal hyperparameter configuration. In order to evaluate the effectiveness of hyperparameter optimization, the proposed algorithm is compared with the mainstream convolutional neural network hyperparameter optimization algorithms on mixed national institute of standards and technology and CIFAR-10 datasets. Experimental results show that the proposed algorithm achieves higher accuracy with less resources.
Keywords:convolutional neural network  manta ray foraging optimization  hyperparameter optimization  
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号