首页 | 本学科首页   官方微博 | 高级检索  
     


Pre-sodiation strategy for superior sodium storage batteries
Authors:Yongkai Xu  Haozheng Sun  Cunshuang Ma  Jingjing Gai  Yanhua Wan  Weihua Chen
Affiliation:Green Catalysis Center,and College of Chemistry,Zhengzhou University,Zhengzhou 450001,China
Abstract:The irreversible consumption of sodium in the initial several cycles greatly led to the attenuation of capacity, which caused the low initial coulombic efficiency (ICE) and obvious poor cycle stability. Pre-sodiation can effectively improve the electrochemical performance by compensating the capacity loss in the initial cycle. Here, carbon-coated sodium-pretreated iron disulfide (NaFeS2@C) has been synthesized through conventional chemical method and used in sodium metal battery as a cathode material. The calculated density of states (DOS) of NaFeS2@C is higher, which implies enhanced electron mobility and improved cycle reversibility. Because of the highly reversible conversion reaction and the compensation of irreversible capacity loss during the initial cycle, the Na/NaFeS2@C battery achieves ultra-high initial coulombic efficiency (96.7%) and remarkable capacity (751 mA·h·g-1 at 0.1 A·g-1). In addition, highly reversible electrochemical reactions and ultra-thin NaF-rich solid electrolyte interphase (SEI) also benefit for the electrochemical performance, even at high current density of 100 A·g-1, it still exhibits a reversible capacity of 136 mA·h·g-1, and 343 mA·h·g-1 after 2500 cycles at 5.0 A·g-1. This work aims to bring up new insights to improve the ICE and stability of sodium metal batteries.
Keywords:Pre-sodiation  Solid electrolyte interphase  Initial coulombic efficiency  Sodium metal batteries  Interface  Electrochemistry  
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号