首页 | 本学科首页   官方微博 | 高级检索  
     

汽轮机功率与循环水系统功耗神经网络模型的建立及其应用
引用本文:余廷芳,黄越雯,林中达. 汽轮机功率与循环水系统功耗神经网络模型的建立及其应用[J]. 中国电力, 2005, 38(12): 47-50
作者姓名:余廷芳  黄越雯  林中达
作者单位:1. 江西省电力试验研究院,动力所,江西,南昌,330006
2. 杭州电子科技大学,自动化学院电气工程系,浙江,杭州,310018
3. 东南大学,动力工程系,江苏,南京,210096
摘    要:首次采用自组织特征映射(SOM)网络结合BP神经网络方法建立了汽轮机功率模型,利用SOM网络的聚类功能,解决了传统样本提取方法正交性和完备性差的局限性。在合肥电厂125MW机组实际运行数据的基础上进行了仿真,仿真结果表明该模型的预测计算结果与实际数据误差在1.5%之内,大部分误差不超过1%。利用该模型和建立的循环水系统功耗神经网络模型可确定不同工况下的真空运行最优值(基准值),为凝汽器真空运行最优值的确定提供了一个全新的方法。同时利用建立的神经网络模型可计算热力系统几个主要参数偏离基准值的能损偏差,与传统的运行参数基准值模型和能损偏差分析方法相比,该模型具有明确的设备针对性。

关 键 词:汽轮机功率 循环水系统 自组织特征映射(SOM) BP神经网络 基准值 能损分析
文章编号:1004-9649(2005)12-0047-04
收稿时间:2005-06-06
修稿时间:2005-09-23

Modeling and application of ANN models for power output of steam turbine and power consumption in circulating water system
YU Ting-fang,HUANG Yue-wen,LIN Zhong-da. Modeling and application of ANN models for power output of steam turbine and power consumption in circulating water system[J]. Electric Power, 2005, 38(12): 47-50
Authors:YU Ting-fang  HUANG Yue-wen  LIN Zhong-da
Abstract:The Artificial Neural Network(ANN) model of Self Organization Feature Map(SOM) and BP network were introduced to set up the model of steam turbine power output,with the aid of SOM's clustering ability,the limitation of conventional collection of training samples were addressed.Based on the actual operating data in 125 MW unit of Hefei Power Plant,with the trained model,the error of the power output predicted by this model and the actual power generated by steam turbine is less 1.5%,most of which is no more than 1%.With the established ANN models of steam turbine power output and the power needed in circulating water system,the optimum vacuum value(reference value) of condenser as well as the energy loss deviation of several main operation parameters from reference can be determined.Compared with conventional model,the model established in this paper is of good pertinence to equipment as a result of practical sampling data collection on running equipment.
Keywords:steam turbine power output    circulating water system   SOM    BP neural network   reference value    energy loss analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号