首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合几何特征时空图卷积网络的动作识别
引用本文:邹浩立. 基于融合几何特征时空图卷积网络的动作识别[J]. 计算机系统应用, 2022, 31(10): 261-269
作者姓名:邹浩立
作者单位:华南师范大学 计算机学院, 广州 510631
摘    要:最近,基于骨架的动作识别研究受到了广泛关注.因为图卷积网络可以更好地建模非规则数据的内部依赖,ST-GCN (spatial temporal graph convolutional network)已经成为该领域的首选网络框架.针对目前大多数基于ST-GCN的改进方法忽视了骨架序列所蕴含的几何特征.本文利用骨架关节几何特征,作为ST-GCN框架的特征补充,其具有视觉不变性和无需添加额外参数学习即可获取的优势,进一步地,利用时空图卷积网络建模骨架关节几何特征和早期特征融合方法,构成了融合几何特征的时空图卷积网络框架.最后,实验结果表明,与ST-GCN、2s-AGCN和SGN等动作识别模型相比,我们提出的框架在NTU-RGB+D数据集和NTU-RGB+D 120数据集上都取得了更高准确率的效果.

关 键 词:几何特征  特征融合  骨架  时空图卷积网络  动作识别  深度学习
收稿时间:2022-01-11
修稿时间:2022-01-30

Spatio-temporal GCN with Geometric Features Fusion for Action Recognition
ZOU Hao-Li. Spatio-temporal GCN with Geometric Features Fusion for Action Recognition[J]. Computer Systems& Applications, 2022, 31(10): 261-269
Authors:ZOU Hao-Li
Affiliation:School of Computer Science, South China Normal University, Guangzhou 510631, China
Abstract:Recently, the research on skeleton-based action recognition has attracted a lot of attention. As the graph convolutional networks can better model the internal dependencies of non-regular data, the spatio-temporal graph convolutional network (ST-GCN) has become the preferred network framework in this field. However, most of the current improvement methods based on the ST-GCN framework ignore the geometric features contained in the skeleton sequences. In this study, we exploit the geometric features of the skeleton joint as the feature enhancement of the ST-GCN framework, which has the advantage of visual invariance without additional parameters. Further, we integrate the geometric feature of the skeleton joint with earlier features to develop ST-GCN with geometric features. Finally, the experimental results show that the proposed framework achieves higher accuracy on both NTU-RGB+D dataset and NTU-RGB+D 120 dataset than other action recognition models such as ST-GCN, 2s-AGCN, and SGN.
Keywords:geometric features  feature fusion  skeleton  spatio-temporal graph convolutional network (ST-GCN)   action recognition  deep learning
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号