首页 | 本学科首页   官方微博 | 高级检索  
     

基于构造性神经网络的时间序列混合预测模型 *
引用本文:杨雪洁,赵姝,张燕平. 基于构造性神经网络的时间序列混合预测模型 *[J]. 计算机应用研究, 2008, 25(10): 2920-2921
作者姓名:杨雪洁  赵姝  张燕平
作者单位:安徽大学计算智能与信号处理教育部重点实验室,合肥230039
基金项目:国家自然科学基金资助项目 ( 60475107 , 60675031 ) ;国家“ 973”计划资助项目 ( 2004 CB318108) ;安徽省教育厅自然科学基金重点资助项目 ( 2006KJ015A) ;安徽省教育厅自然科学基金资助项目 ( 2005KJ053 ) ;安徽大学“ 211 ”工程学术创新团队资助项目
摘    要:针对传统时间序列预测模型不适应非线性预测而适应非线性预测的BP算法存在收敛速度慢,且容易陷入局部极小等问题,提出一种基于构造性神经网络的时间序列混合预测模型。采用构造性神经网络模型(覆盖算法)得出的类别值对统计时间序列模型的预测值进行修正,建立一种同时考虑时间序列自身周期变化和外生变量因子对时间序列未来变化趋势影响的混合预测模型,涵盖了实际问题的线性和非线性两方面,提高了预测精度。将该模型应用到粮食产量的预测中,取得了较好的预测效果。

关 键 词:时间序列预测  构造性神经网络  统计时间序列模型  产量预测

Time-series mixed prediction model based on constructive neural networks
YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping. Time-series mixed prediction model based on constructive neural networks[J]. Application Research of Computers, 2008, 25(10): 2920-2921
Authors:YANG Xue-jie  ZHAO Shu  ZHANG Yan-ping
Affiliation:( Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Hefei University, Hefei 230039, China)
Abstract:Traditional times-series prediction models are not adapted to nonlinear time-series prediction, and BP algorithm .which fits nonlinear time-series prediction has some trouble with slow convergence rate and easy getting into local minimum. This paper put forward a time-series mixed prediction model based on constructive neural networks. The predictions of statistical times-series models were corrected based on the different types which were calculated by constructive neural networks models(covering algorithm) . This mixed model considered both periodic changes of times-series and the influence of external variable factors on the times-series in the future. The prediction accuracies could be improved because the model were constructed fromthe nonlinear and linear aspects. The experimental results show that using this model to forecast and analysis wheat yield is effective.
Keywords:time-series prediction   constructive neural networks   statistical times-series models   yield forecast
本文献已被 维普 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号