首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling non-Newtonian two-phase flow in conventional and helical-holding tubes
Authors:K. P. Sandeep,Carlos A. Zuritz,&   Virendra M. Puri
Affiliation:129 Schaub Hall, Box 7624, North Carolina State University, Raleigh, NC 27695, USA;Former Associate Professor, Pennsylvania State University, University Park, PA, USA;Professor, Pennsylvania State University, University Park, PA, USA
Abstract:Summary The research described in this communication was undertaken to test the hypothesis that the fluid mechanics and heat-transfer aspects involved in aseptic processing could be modelled. In order to do this, a finite difference FORTRAN program (using the fourth-order, four-stage explicit Runge–Kutta method) was written by the authors to compute the velocity of fluid elements and particles during fully 3-dimensional flow in conventional and helical-holding tubes. The effect of particles on the fluid-flow field and the interaction between particles was taken into account during the modelling. Simulation results showed that an increase in specific gravity, tube diameter or coil diameter resulted in an increase in the residence time of the particles, while an increase in the flow rate decreased the residence time of the particles. An increase in the particle diameter or the flow rate narrowed the Residence Time Distribution (RTD) of the particles, while an increase in specific gravity or the tube diameter increased the RTD of the particles.
Keywords:Aseptic processing    finite difference    particulate    residence time distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号