首页 | 本学科首页   官方微博 | 高级检索  
     

面向多用户检测的蚁群算法及其改进
引用本文:殷志锋,蔡子亮,田亚菲. 面向多用户检测的蚁群算法及其改进[J]. 计算机工程与设计, 2007, 28(7): 1511-1513,1516
作者姓名:殷志锋  蔡子亮  田亚菲
作者单位:许昌学院,电气信息工程学院,河南,许昌,461000;兰州大学,信息科学与工程学院,甘肃,兰州,730000;许昌学院,电气信息工程学院,河南,许昌,461000;兰州大学,信息科学与工程学院,甘肃,兰州,730000
基金项目:河南省科技厅科技攻关项目
摘    要:基于蚁群算法建立了一个多用户检测问题的模型,在这个模型中,蚁群算法得到了简化并且更加利于并行计算.随后将基于优化排序的蚂蚁系统用于多用户检测,并通过分析算法的缺陷提出了一种蚁群算法与进化规划相结合的混合算法,扩大了搜索空间,降低了搜索陷入局部极小的概率.通过对多用户检测问题的试验仿真表明,改进算法不仅操作简单,而且全局搜索能力有了显著的提高.

关 键 词:蚁群算法  优化排序蚂蚁系统  多用户检测  进化规划  路径
文章编号:1000-7024(2007)07-1511-03
修稿时间:2006-07-20

Ant colony optimization and its improvement for multiuser detection
YIN Zhi-feng,CAI Zi-liang,TIAN Ya-fei. Ant colony optimization and its improvement for multiuser detection[J]. Computer Engineering and Design, 2007, 28(7): 1511-1513,1516
Authors:YIN Zhi-feng  CAI Zi-liang  TIAN Ya-fei
Affiliation:1. College of Electro-Information Engineering, Xuchang University, Xuchang 461000, China; 2. College of Information Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract:A model of MUD based on ACO is proposed. ACO is simplified in this model,which can facilitate parallel computing. Then a new multiuser detector based on rank-based version of ant system (ASrank ) is proposed. Through the analysis of the imperfections of the ASrank,a hybrid algorithm combining evolutionary programming (EP) with ASrank is proposed,which expanded the searching space and reduced the probability of sinking into local minimum. The experimental result of multiuser detection shows that the new method simplifies algorithm structure and improves the ability of global optimum.
Keywords:ant colony optimization  rank-based version of ant system (ASrank)  mutiuser detection  evolutionary programming  routing  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号