首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM和Kalman滤波的公交车到站时间预测
作者单位:;1.青岛大学计算机科学技术学院
摘    要:智能交通系统的建设已成为城市交通发展面临的主要问题,其中公交车到站时间预测是智能交通系统的重要组成部分。公交车到站时间数据是具有长期和短期特性的时间序列数据,而且公交车易受到外来因素的影响,因此公交车到站时间也是动态变化的。基于上述问题,提出基于LSTM和Kalman滤波的公交车到站时间预测模型,其中LSTM模型用来预测公交车到站的基础时间序列,Kalman滤波模型用于对基础时间数据序列进行动态调整,最终将调整后的预测值的正确率、均方差、平均绝对偏差分别与LSTM、SVM、SVM+Kalman模型预测结果进行对比,证明LSTM+Kalman模型预测值的正确率,均方差和平均绝对偏差均优于对比模型。

关 键 词:智能交通  公交车到站时间  LSTM模型  Kalman滤波  时间序列

BUS ARRIVAL TIME PREDICTION BASED ON LSTM AND KALMAN FILTERING
Abstract:
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号