首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical Conductivity of Mullite Ceramics
Authors:Mohammed Malki  Christopher M Hoo  Martha L Mecartney  Hartmut Schneider
Affiliation:1. CNRS UPR 3079, Conditions Extremes et Materiaux: Haute Temperature et Irradiation (CEMHTI), , Orléans, Cedex 2, 45072 France;2. Ecole Polytechnique de l'Université d'Orléans, , Orléans, 45072 France;3. Department of Chemical Engineering and Materials Science, University of California, , Irvine, 92697‐2575 CA;4. Institut für Kristallographie, Universit?t zu K?ln, , K?ln, 50939 Germany;5. Fachbereich Geowissenschaften, Universit?t Bremen, , Klagenfurter Strasse, Bremen, 28334 Germany
Abstract:The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10?9 Scm?1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10?6 Scm?1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10?5 Scm?1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号