首页 | 本学科首页   官方微博 | 高级检索  
     


Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements
Authors:Jung-Heum Park Hee-Chul Kim Hyeong-Seok Lim
Affiliation:Sch. of Comput. Sci. & Inf. Eng., Catholic Univ. of Korea, South Korea;
Abstract:A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. We deal with the graph G/sub 0/ /spl oplus/ G/sub 1/ obtained from connecting two graphs G/sub 0/ and G/sub 1/ with n vertices each by n pairwise nonadjacent edges joining vertices in G/sub 0/ and vertices in G/sub 1/. Many interconnection networks such as hypercube-like interconnection networks can be represented in the form of G/sub 0/ /spl oplus/ G/sub 1/ connecting two lower dimensional networks G/sub 0/ and G/sub 1/. In the presence of faulty vertices and/or edges, we investigate many-to-many disjoint path coverability of G/sub 0/ /spl oplus/ G/sub 1/ and (G/sub 0/ /spl oplus/ G/sub 1/) /spl oplus/ (G/sub 2/ /spl oplus/ G/sub 3/ ), provided some conditions on the Hamiltonicity and disjoint path coverability of each graph G/sub i/ are satisfied, 0 /spl les/ i /spl les/ 3. We apply our main results to recursive circulant G(2/sup m/, 4) and a subclass of hypercube-like interconnection networks, called restricted HL-graphs. The subclasses includes twisted cubes, crossed cubes, multiply twisted cubes, Mobius cubes, Mcubes, and generalized twisted cubes. We show that all these networks of degree m with f or less faulty elements have a many-to-many k-DPC joining any k distinct source-sink pairs for any k /spl ges/ 1 and f /spl ges/ 0 such that f+2k /spl les/ m - 1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号