首页 | 本学科首页   官方微博 | 高级检索  
     


Improved Constructions for Non-adaptive Threshold Group Testing
Authors:Mahdi Cheraghchi
Affiliation:1. Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Abstract:The basic goal in combinatorial group testing is to identify a set of up to d defective items within a large population of size n?d using a pooling strategy. Namely, the items can be grouped together in pools, and a single measurement would reveal whether there are one or more defectives in the pool. The threshold model is a generalization of this idea where a measurement returns positive if the number of defectives in the pool reaches a fixed threshold u>0, negative if this number is no more than a fixed lower threshold ?<u, and may behave arbitrarily otherwise. We study non-adaptive threshold group testing (in a possibly noisy setting) and show that, for this problem, O(d g+2(logd)log(n/d)) measurements (where g:=u???1 and u is any fixed constant) suffice to identify the defectives, and also present almost matching lower bounds. This significantly improves the previously known (non-constructive) upper bound O(d u+1log(n/d)). Moreover, we obtain a framework for explicit construction of measurement schemes using lossless condensers. The number of measurements resulting from this scheme is ideally bounded by O(d g+3(logd)logn). Using state-of-the-art constructions of lossless condensers, however, we obtain explicit testing schemes with O(d g+3(logd)quasipoly(logn)) and O(d g+3+β poly(logn)) measurements, for arbitrary constant β>0.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号