首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的污水处理软测量算法研究
引用本文:崔祎,田丽,周峰,李泽应,王军. 基于RBF神经网络的污水处理软测量算法研究[J]. 自动化与仪器仪表, 2007, 0(4): 3-4,39
作者姓名:崔祎  田丽  周峰  李泽应  王军
作者单位:安徽工程科技学院电气与传动控制重点实验室,安徽芜湖,241000
摘    要:分析了软测量技术在污水处理问题上的可行性,建立了径向基(RBF)神经网络软测量模型,对污水处理过程中的各种污染物质进行监控和预测。结果表明:应用软测量技术能较好的克服污水处理过程中由随机干扰、强非线性、大时变、严重滞后等因素带来的一系列问题,具有广阔的应用前景。

关 键 词:软测量  神经网络  污水处理  预测
文章编号:1001-9227(2007)04-0003-03
修稿时间:2007-04-16

A soft measure algorithm for sewage disposat based on RBF neural network
Cui Yi. A soft measure algorithm for sewage disposat based on RBF neural network[J]. Automation & Instrumentation, 2007, 0(4): 3-4,39
Authors:Cui Yi
Abstract:This paper investigates the feasibility of soft measure for sewage disposal, and constructs a soft measure model based on RBF neural network, which is used for inspecting and forecasting diversified pollutants through the process of sewage disposal. The result indicates, the soft measure can overcomes a series of problems through the process of sewage disposal such as random interfere, strong nonlinearity, big time change, serious lag and so on, therefore, this method will has a bright future.
Keywords:Soft measure   Neural network   Sewage disposal   Forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号