首页 | 本学科首页   官方微博 | 高级检索  
     

伴随时空特性的雷电预测BP-ANN模型研究
引用本文:李芬,肖建,林志强,李志鹏. 伴随时空特性的雷电预测BP-ANN模型研究[J]. 计算机与现代化, 2019, 0(4): 76-81. DOI: 10.3969/j.issn.1006-2475.2019.04.014
作者姓名:李芬  肖建  林志强  李志鹏
作者单位:江西省气象信息中心,江西 南昌,330096;南昌大学信息工程学院,江西 南昌,330031
基金项目:江西省科技计划项目(20112BBI90024)
摘    要:
为提高雷电预测模型的准确率和学习性能,提出一种基于增量学习和时空特性的雷电预测BP-ANN二项分类器。通过增量方式和依据数据的时空特征进行历史数据的学习,建立多种BP-ANN模型,分别对新的数据进行预测分类,然后采用多数投票方式确定新数据的类别。分别构建基于增量学习的BP-ANN模型、基于时空特性的BP-ANN模型以及结合基于增量学习和时空特性的BP-ANN模型这3种雷电预测模型,并在真实雷电数据集上进行预测准确度和学习性能的测试,结果表明了增量学习、时空特性以及二者结合的优劣。

关 键 词:雷电预测  增量学习  时空特性  BP-ANN  二项分类器
收稿时间:2019-04-30

Research on BP-ANN Models of Lightning Prediction with Spatio-temporal Characteristics
LI Fen,XIAO Jian,LIN Zhi-qiang,LI Zhi-peng. Research on BP-ANN Models of Lightning Prediction with Spatio-temporal Characteristics[J]. Computer and Modernization, 2019, 0(4): 76-81. DOI: 10.3969/j.issn.1006-2475.2019.04.014
Authors:LI Fen  XIAO Jian  LIN Zhi-qiang  LI Zhi-peng
Affiliation:(Jiangxi Meteorological Information Center, Nanchang 330096, China;School of Information Engineering, Nanchang University, Nanchang 330031, China)
Abstract:
In order to improve the accuracy and learning performance of the lightning prediction model, a BP-ANN binomial classifier of lightning prediction based on incremental learning and spatio-temporal characteristics is proposed. It makes a study of historical data by incremental approach and according to spatio-temporal characteristics of data, builds many BP-ANN models, classifies the new data respectively, and then uses the majority voting to determine the category of the new data. This paper constructs three kinds of lightning prediction models, BP-ANN model based on incremental learning, BP-ANN model based on spatio-temporal characteristics, and BP-ANN model combined both. The accuracy and learning performance are tested on real lightning data set, the results show the advantages and disadvantages of incremental learning, spatio-temporal characteristics and combination of both.
Keywords:lightning prediction   incremental learning   spatio-temporal characteristics   BP-ANN   binomial classifier  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号