首页 | 本学科首页   官方微博 | 高级检索  
     

基于背景先验与低秩恢复的显著性目标检测方法
引用本文:申扬,李巍,刚毅凝,赵睿,郝跃冬,王超. 基于背景先验与低秩恢复的显著性目标检测方法[J]. 计算机与现代化, 2019, 0(1): 33-39. DOI: 10.3969/j.issn.1006-2475.2019.01.007
作者姓名:申扬  李巍  刚毅凝  赵睿  郝跃冬  王超
作者单位:国网辽宁省电力有限公司,辽宁 沈阳,110004;南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京,211000;南京航空航天大学计算机科学与技术学院,江苏 南京,211106
基金项目:国家电网公司总部科技项目(SGLNXT00DKJS1700166)
摘    要:显著性检测是指计算机通过算法自动识别出图像中的显著性目标,广泛应用于目标识别、图像检索与图像分类等领域。针对现有基于稀疏与低秩矩阵恢复的显著性检测模型中低秩转换矩阵的获取、前景稀疏矩阵的处理以及超像素块之间的关系,需对现有的稀疏与低秩矩阵恢复模型进行优化,使之更好地适用于图像的显著性检测。首先,根据背景的对比度和连通度原则获取图像低秩的背景字典,采用3种尺度分割图像的多个特征矩阵获得图像的前景稀疏矩阵;其次,通过计算邻居像素点之间的影响因子矩阵与置信度矩阵对显著图的结果进行结构约束,并且采用稀疏与低秩矩阵恢复模型对图像进行显著性检测;最后,利用K-means聚类算法的传播机制优化得到的显著图。在公开数据集上进行实验验证,结果证明本文方法能够准确有效地检测出显著性目标。

关 键 词:显著性检测  稀疏低秩恢复  超像素
收稿时间:2019-01-30

Salient Object Detection Method Based on Background Prior and Low-rank Matrix Recovery
SHEN Yang,LI Wei,GANG Yi-ning,ZHAO Rui,HAO Yue-dong,WANG Chao. Salient Object Detection Method Based on Background Prior and Low-rank Matrix Recovery[J]. Computer and Modernization, 2019, 0(1): 33-39. DOI: 10.3969/j.issn.1006-2475.2019.01.007
Authors:SHEN Yang  LI Wei  GANG Yi-ning  ZHAO Rui  HAO Yue-dong  WANG Chao
Affiliation:(State Grid Liaoning Information and Communication Company,Shenyang 110004,China;Nari Group Corporation(State Grid Electric Power Research Institute),Nanjing 211000,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
Abstract:Saliency object detection means that the computer automatically recognizes the saliency object in the image through the algorithm, which is widely used in many applications such as object recognition, image retrieval and image classification. Aiming at the acquisition of low-rank transformation matrix, the processing of foreground sparse matrix and the relationship between superpixel blocks in the existing significance detection model based on sparse and low-rank matrix restoration, the existing sparse and low-rank matrix restoration model is optimized to make it better applicable to the significance detection of images. Firstly, the low-rank background dictionary is obtained according to the principle of contrast and connectivity. Meanwhile, we used three scales to split multiple feature matrix of images to obtain the foreground sparse matrix of image. Secondly, the structural constraints are made for the results of the significance graph by calculating the influence factor matrix and the confidence matrix between the neighbor pixels, and sparse and low-rank matrix recovery models are used to detect the significance of the image. Finally, the propagation mechanism of K-means clustering algorithm is used to optimize the significant graph. The experimental verification on several datasets shows that the proposed method can accurately and effectively detect saliency object.
Keywords:saliency detection  sparse low-rank matrix recover  superpixel  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号