首页 | 本学科首页   官方微博 | 高级检索  
     

非刚性稠密匹配大位移运动光流估计
引用本文:张聪炫,陈震,熊帆,黎明,葛利跃,陈昊. 非刚性稠密匹配大位移运动光流估计[J]. 电子学报, 2019, 47(6): 1316-1323. DOI: 10.3969/j.issn.0372-2112.2019.06.019
作者姓名:张聪炫  陈震  熊帆  黎明  葛利跃  陈昊
作者单位:南昌航空大学无损检测技术教育部重点实验室,江西南昌330063;南昌航空大学江西省图像处理与模式识别重点实验室,江西南昌330063;中国科学院自动化研究所,北京100190;南昌航空大学无损检测技术教育部重点实验室,江西南昌330063;南昌航空大学江西省图像处理与模式识别重点实验室,江西南昌330063;南昌航空大学无损检测技术教育部重点实验室,江西南昌,330063
基金项目:国家自然科学基金;国家自然科学基金;国家自然科学基金;江西省优势科技创新团队项目;江西省优势科技创新团队项目;江西省青年科学基金;江西省研究生创新专项
摘    要:光流场是目标检测,无人机定位等众多计算机视觉任务的重要基础.本文针对非刚性大位移运动等困难运动类型图像序列光流计算的准确性与鲁棒性问题,提出一种基于非刚性稠密匹配的TV-L1(Total Variational with L1 norm,TV-L1)大位移光流计算方法.首先,使用非刚性稠密块匹配计算图像序列初始最近邻域场,其次根据图像相邻块区域的相似性消除初始最近邻域场中的非一致性区域以得到准确的图像最近邻域场.然后,在图像金字塔分层计算框架下,将图像最近邻域场引入基于非局部约束的TV-L1光流估计模型,通过Quadratic Pseudo-Boolean Optimization(QPBO)融合算法在金字塔分层图像光流计算时对TV-L1模型光流估计进行大位移运动补偿.最后,采用标准测试图像序列对本文方法和当前代表性的变分方法LDOF(Large Displacement Optical Flow,LDOF)、Classic+NL、NNF(Nearest Neighbor Fields,NNF)以及深度学习方法FlowNet2.0进行对比分析.实验结果表明,本文方法能有效提高非刚性运动、大位移运动以及运动遮挡等困难运动类型光流估计的精度与鲁棒性.

关 键 词:光流场  目标检测  无人机  计算机视觉  非刚性块匹配  大位移运动  最近邻域场  深度学习
收稿时间:2018-07-21

Large Displacement Motion Optical Flow Estimation with Non-Rigid Dense Patch Matching
ZHANG Cong-xuan,CHEN Zhen,XIONG Fan,LI Ming,GE Li-yue,CHEN Hao. Large Displacement Motion Optical Flow Estimation with Non-Rigid Dense Patch Matching[J]. Acta Electronica Sinica, 2019, 47(6): 1316-1323. DOI: 10.3969/j.issn.0372-2112.2019.06.019
Authors:ZHANG Cong-xuan  CHEN Zhen  XIONG Fan  LI Ming  GE Li-yue  CHEN Hao
Affiliation:1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China;2. Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China;3. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Optical flow field is an important basis for many computer vision tasks such as target detection and unmanned aerial vehicle positioning.In order to develop the accuracy and robustness of optical flow estimation suffered from the difficult motion such as non-rigid movement and large displacement motion,this paper proposes a large displacement optical flow estimation approach based on non-rigid dense patch matching.Firstly,we utilize the non-rigid dense patch matching to compute the initial nearest neighbor field between the consecutive frames,and eliminate the inconsistent regions of the computed nearest neighbor field according to the consistency of the neighboring patches in the image to obtain an accurate image nearest neighbor field.Secondly,we merge the nearest neighbor field into the TV-L1(Total Variational with L1 norm,TV-L1) optical flow model,and employ the nearest neighbor field to compensate the large displacement optical flow of TV-L1 model by using the quadratic pseudo-Boolean optimization (QPBO) fusion algorithm during the coarse-to-fine computation scheme.Finally,we employ the standard test image sequences to evaluate the performance of our approach and some state-of-the-art methods including LDOF(Large Displacement Optical Flow,LDOF),Classic+NL,NNF(Nearest Neighbor Fields,NNF) and FlowNet2.0.The experimental results demonstrate that the proposed method has the higher accuracy and better robustness of optical flow estimation for difficult motion such as non-rigid movement,large displacement motion and motion occlusion.
Keywords:optical flow field  target detection  unmanned aerial vehicle  computer vision  non-rigid patch matching  large displacement motion  nearest-neighbor filed  deep learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号