摘 要: | 为提高噪声环境下的语音识别准确率,提出一种改进的语音特征提取算法。该算法采用模拟人耳听觉特性的非线性幂函数提取一种新的耳蜗滤波倒谱系数,并在特征提取前端引入谱减法对信号进行增强,将提取到的新的特征及其一阶差分组成一种混合特征参数;再联合主成分分析对该混合特征进行降维,将最终得到的特征用于一个非特定人、孤立词、小词汇量的语音识别系统。实验结果表明:采用非线性幂函数提取的耳蜗滤波倒谱系数特征与传统的耳蜗滤波倒谱系数特征相比,明显提高了语音识别准确率;混合特征参数相比单一特征能达到更佳的语音识别性能;结合主成分分析后的特征集在信噪比为0dB时的识别正确率可达到88.10%。
|