首页 | 本学科首页   官方微博 | 高级检索  
     

基于多种群动态协同的多目标粒子群算法
引用本文:于慧,王宇嘉,陈强,肖闪丽. 基于多种群动态协同的多目标粒子群算法[J]. 电子科技, 2019, 32(10): 28-33. DOI: 10.16180/j.cnki.issn1007-7820.2019.10.006
作者姓名:于慧  王宇嘉  陈强  肖闪丽
作者单位:上海工程技术大学 电子电气工程学院,上海 201620
基金项目:国家自然科学基金(61403249)
摘    要:针对复杂的多目标问题,文中提出了一种基于多种群动态协同的多目标粒子群算法。该算法设置多个种群同时进行独立搜索,从而有效提高算法的搜索能力。此外,为进一步保证种群多样性,该算法利用动态聚类策略将种群划分为两个子群,并改变子种群的更新方式。通过动态学习样本和差分变异,进一步避免算法陷入局部最优。经过对一系列标准测试函数进行仿真,验证了该算法在多目标问题上的有效性。将该算法与5种现存算法进行比较,结果显示该算法的多样性和收敛性均具有明显的优势。

关 键 词:多目标优化  粒子群算法  多种群  动态聚类  动态学习样本  差分变异  
收稿时间:2018-10-23

Multi-Objective Particle Swarm Optimization Based on Multi-population Dynamic Cooperation
YU Hui,WANG Yujia,CHEN Qiang,XIAO Shanli. Multi-Objective Particle Swarm Optimization Based on Multi-population Dynamic Cooperation[J]. Electronic Science and Technology, 2019, 32(10): 28-33. DOI: 10.16180/j.cnki.issn1007-7820.2019.10.006
Authors:YU Hui  WANG Yujia  CHEN Qiang  XIAO Shanli
Affiliation:School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
Abstract:Aiming at the complex multi-objective problems, a multi-objective particle swarm optimization algorithm based on multi-population dynamic cooperation was proposed. In this algorithm, multiple populations were set up to search independently at the same time, thereby effectively improving the search ability of the algorithm. In addition, in order to further ensure the diversity of the population, the algorithm divided the population into two sub-populations by dynamic clustering strategy, and changed the updating mode of subpopulations. Furthermore, dynamic learning samples and differential mutation were used to further prevent the algorithm from falling into local optimum. A series of standard test functions were simulated to verify the effectiveness of the algorithm on multi-objective problems. In addition, comparing the algorithm with five existing algorithms, the results showed that the algorithm has obvious advantages in diversity and convergence.
Keywords:multi-objective optimization  particle swarm optimization  multi-population  dynamic clustering  dynamic learning samples  differential mutation  
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号