首页 | 本学科首页   官方微博 | 高级检索  
     

协同视觉显著性检测方法综述
引用本文:钱晓亮,白臻,陈渊,张鼎文,史坤峰,王芳,吴青娥,毋媛媛,王慰. 协同视觉显著性检测方法综述[J]. 电子学报, 2019, 47(6): 1352-1365. DOI: 10.3969/j.issn.0372-2112.2019.06.024
作者姓名:钱晓亮  白臻  陈渊  张鼎文  史坤峰  王芳  吴青娥  毋媛媛  王慰
作者单位:郑州轻工业学院电气信息工程学院,河南郑州,450002;西安电子科技大学机电工程学院,陕西西安,710071
基金项目:国家自然科学基金;国家自然科学基金;国家自然科学基金;河南省高等学校科技创新团队支持计划;河南省高等学校重点科研项目;河南省高等学校重点科研项目;博士基金;博士基金;博士基金
摘    要:协同视觉显著性检测是视觉注意力计算领域中一个快速发展的新兴分支,致力于检测多幅相关场景图像中的公共显著目标,在各种计算机视觉任务中有广泛应用.考虑到特征提取策略的设计是协同视觉显著性检测当前研究的重点,本文首先根据特征提取策略的不同对现有的协同视觉显著检测方法进行了分类介绍和定性分析.其次,通过在5个公开数据库上的主观和定量对比,对各流行算法的性能进行了评估,分析了特征提取策略对算法性能的影响以及各数据库的复杂度,并验证了协同视觉显著性检测和视觉显著性检测的区别.最后,对本文工作进行了总结,并对当前研究中存在的问题和未来的研究工作进行了讨论.

关 键 词:视觉注意力  协同视觉显著性  特征提取策略  手工特征  浅层学习特征  深度学习特征
收稿时间:2018-05-02

A Review of Co-saliency Detection
QIAN Xiao-liang,BAI Zhen,CHEN Yuan,ZHANG Ding-wen,SHI Kun-feng,WANG Fang,WU Qing-e,WU Yuan-yuan,WANG Wei. A Review of Co-saliency Detection[J]. Acta Electronica Sinica, 2019, 47(6): 1352-1365. DOI: 10.3969/j.issn.0372-2112.2019.06.024
Authors:QIAN Xiao-liang  BAI Zhen  CHEN Yuan  ZHANG Ding-wen  SHI Kun-feng  WANG Fang  WU Qing-e  WU Yuan-yuan  WANG Wei
Affiliation:1. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China;2. School of Mechano-Electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
Abstract:Co-saliency detection is a new branch with the rapid development in the field of visual attention,which concerns the detection of the common salient objects from multiple relevant scene images,and can be widely used in various computer vision tasks.Considering the key point of current research is the design of feature extraction strategy,the existing co-saliency detection methods are firstly summarized and qualitatively analyzed according to the different feature extraction strategies in this paper.Subsequently,based on the subjective and quantitative comparisons in the five open datasets,the performance of the state-of-the-art algorithms is evaluated,the influence of the feature extraction strategy on the performance of algorithms and the complexity of the datasets is analyzed,and the difference of co-saliency detection and saliency detection is also verified.Finally,the conclusion of this paper are presented,the problems of current research and the future development are also discussed.
Keywords:visual attention  co-saliency  feature extraction strategy  hand-designed features  shallow learning features  deep learning feature  
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号