首页 | 本学科首页   官方微博 | 高级检索  
     

加性噪声条件下鲁棒说话人确认
作者姓名:张二华  王明合  唐振民
作者单位:南京理工大学计算机科学与工程学院,江苏南京,210094;南京理工大学计算机科学与工程学院,江苏南京,210094;南京理工大学计算机科学与工程学院,江苏南京,210094
摘    要:基于非负矩阵分解的语音去噪,在提高语音信号信噪比的同时,也会引起语音失真,从而导致噪声环境下说话人确认系统性能下降.本文提出基于分区约束非负矩阵分解的语音去噪方法(Nonnegative Matrix Factorization with Partial Constrains,PCNMF),目的是在未知和非平稳噪声条件下提高话人确认系统的鲁棒性.PCNMF在满足分区约束条件的基础上分别构建语音字典和噪声字典.考虑到传统语音训练产生的语音字典往往含有一定的噪声成分,PCNMF通过数学模型产生基音及泛音频谱,在此基础上利用该频谱模仿人声的共振峰结构来合成字典,从而保证语音字典纯净性.另一方面,为了克服传统噪声字典构建方法带来的部分噪声信息丢失问题,PCNMF对在线分离出的噪声样本进行分帧和短时傅里叶变换,然后以帧为单位线性组合生成噪声字典.性能评估实验引入了多种噪声类型,实验结果表明PCNMF可有效提高说话人确认系统的鲁棒性,特别是在未知和非平稳噪声条件下其等错率相比基线系统(Multi-Condition)平均降低了5.2%.

关 键 词:语音处理  说话人确认  非负矩阵分解  加性噪声
收稿时间:2016-11-24
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号