摘 要: | 在信息时代,数据获取方式简单快捷,使得数据量呈指数型增长。然而这些数据往往是多源高维的,增加了模型的复杂度,容易造成模型过拟合,并且数据中存在的冗余特征会降低模型分类精度。特征选择算法旨在通过去除不相关、冗余或嘈杂的特征,从原始特征中选择一小部分最有效特征,达到降维的效果。目前特征选择算法种类繁多,其中,基于稀疏矩阵结构的特征选择算法由于具有模型简单易懂和易求解的特点而被学者们广泛关注。本文归纳总结了基于稀疏矩阵结构的特征选择算法分类,重点介绍了鲁棒特征选择模型和多视图特征选择模型。首先,介绍了基于稀疏矩阵结构的特征选择算法基本框架;然后,介绍了基于稀疏矩阵结构的一般模型、鲁棒特征选择模型、多视图的特征选择模型,比较了它们在解决目前特征选择算法研究难点中存在的优势和不足;最后,对基于稀疏矩阵结构的特征选择算法进行了总结。文章阐明了理论研究中存在的问题和难点,探讨了基于稀疏矩阵结构的特征选择算法发展思路。
|