首页 | 本学科首页   官方微博 | 高级检索  
     


Origin of carbon in polychlorinated dioxins and furans formed during sooting combustion
Authors:Wikström Evalena  Ryan Shawn  Touati Abderrahmane  Tabor Dennis  Gullett Brian K
Affiliation:U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Air Pollution Technology Branch, Research Triangle Park, North Carolina 27711, USA.
Abstract:The importance of solid- and gas-phase carbon precursors for the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) during sooting combustion was investigated in an entrained flow reactor (EFR). Experiments were performed at various methane (CH4) flame equivalence ratios with or without gas-phase chlorine (Cl2) and fly ash, to provide a realistic environment for carbon reactions and PCDD/DF formation. Selected experiments were conducted with labeled 13CH4 and 37Cl2 to investigate the relative roles of different carbon and chlorine species for the formation of PCDD/DF. The presence of soot and ash were the two major factors controlling the PCDD/DF yields. The 16 PCDD/DF homologues as well as other analyzed chlorinated aromatics were formed by reaction pathways that varied with degree of chlorination. The mono- and dichlorinated homologues were formed by gas-phase, catalytic, or noncatalytic flame product reactions, occurring during soot formation in the near flame zone and/or at lower reaction temperatures (<650 degrees C) in the postcombustion zone. Meanwhile, the higher (tri- to octa-) chlorinated homologues were mainly formed in the postcombustion zone (<650 degrees C) by fly ash-catalyzed de novo synthesis of the soot. Of these, the PCDD/DFs were formed from high carbon number (>C12) fragments in the solid soot structure, while the PCDDs, at least in part, were also formed by reaction of two C6 fragments. The tri- to hexachlorinated DD/DF homologues were formed via a relatively fast de novo synthesis occurring during the first minutes of reactions on the continuously formed soot particles, whereas de novo synthesis on an aged soot matrix was the major pathway for the hepta- and octachlorinated congeners.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号