首页 | 本学科首页   官方微博 | 高级检索  
     


Implementing public-key cryptography on passive RFID tags is practical
Authors:Alex?Arbit  Yoel?Livne  Email author" target="_blank">Yossef?OrenEmail author  Avishai?Wool
Affiliation:1.Cryptography and Network Security Lab, School of Electrical Engineering,Tel-Aviv University,Ramat Aviv, Tel?Aviv,Israel;2.Network Security Lab, Computer Science Department,Columbia University,New York,USA
Abstract:Passive radio-frequency identification (RFID) tags have long been thought to be too weak to implement public-key cryptography: It is commonly assumed that the power consumption, gate count and computation time of full-strength encryption exceed the capabilities of RFID tags. In this paper, we demonstrate that these assumptions are incorrect. We present two low-resource implementations of a 1,024-bit Rabin encryption variant called WIPR—in embedded software and in hardware. Our experiments with the software implementation show that the main performance bottleneck of the system is not the encryption time but rather the air interface and that the reader’s implementation of the electronic product code Class-1 Generation-2 RFID standard has a crucial effect on the system’s overall performance. Next, using a highly optimized hardware implementation, we investigate the trade-offs between speed, area and power consumption to derive a practical working point for a hardware implementation of WIPR. Our recommended implementation has a data-path area of 4,184 gate equivalents, an encryption time of 180  ms and an average power consumption of 11 \(\upmu \)W, well within the established operating envelope for passive RFID tags.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号