首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical study for determining the ideal operating speed for a two-wheeler rider on varying terrain amplitudes
Authors:Email author" target="_blank">Jaimon?Dennis?QuadrosEmail author  P?Suhas  N?L?Vaishak
Affiliation:1.Department of Mechanical Engineering,Birla Institute of Technology,Ras Al Khaimah,United Arab Emirates;2.Department of Mechanical Engineering,Sahyadri College of Engineering and Management,Mangalore,India
Abstract:The predominant part of the Indian population generally depends on a two-wheeler for transportation needs. However, very poor road conditions and poor vehicle designs have led to development of pains in the body. The percentage of such incidents involving musculoskeletal pains is alarmingly gaining impetus in the region. Hence, an attempt has been made to analyze and obtain ideal operating conditions of the vehicle for varying terrain amplitudes of 5, 10 and 15 mm, respectively. In this work, a coupled human body and twowheeler is modeled as a lumped parameter system. The composite model is analyzed by computer program (MAT lab) for vertical vibration responses of the different body parts to vertical vibrations inputs that are sinusoidal in nature and applied to wheels of the twowheeler. The numerical analysis is carried out for a Hero Honda splendor vehicle and an average male human body weighing around 80 kilograms. The analysis successfully concludes the torso as the part of the human body that experiences maximum displacement followed by head and thorax for all the terrain amplitudes involved in the study. The study also concludes that the ideal speed of the vehicle to be maintained for the body to experience minimum vibrations is 8 Hz i.e. 49.60 km/hr.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号